Dirichlet 积分

Dirichlet 积分

November 26, 2023

【问题】计算广义积分

0+sinxxdx \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x

解法一:构造含参变量函数

I=0+sinxxdx I = \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x

构造函数

f(x)=0+extsinttdt(x0) f(x) = \int_{0}^{+\infty} e^{-xt} \frac{\sin{t}}{t} \mathrm{d}t \quad (x \geqslant 0)

f(0)=I \begin{aligned} f(0) &= I \end{aligned}

同时,利用定积分的基本性质,可以证明

00+extsinttdt0+extsinttdt0+extdt=1x \begin{aligned} 0 &\leqslant \left|\int_{0}^{+\infty} e^{-xt} \frac{\sin{t}}{t} \mathrm{d}t \right| \\ &\leqslant \int_{0}^{+\infty} e^{-xt} \left|\frac{\sin{t}}{t}\right| \mathrm{d}t \\ &\leqslant \int_{0}^{+\infty} e^{-xt} \mathrm{d}t \\ &= \frac{1}{x} \end{aligned}
ℹ️

复变函数积分的特殊性质

复变函数积分的性质几乎与第二类曲线积分的性质一致。这里做一个补充和总结。

设曲线 CC 的长度为 LLf(z)f(z) 是有界的,且

f(z)M |f(z)| \leqslant M

那么有如下不等式成立

Cf(z)dzCf(z)dsCMdsML \begin{aligned} \left| \int_{C} f(z) \mathrm{d}z \right| &\leqslant \int_{C} |f(z)| \mathrm{d}s \\ &\leqslant \int_{C} M \mathrm{d}s \\ &\leqslant ML \end{aligned}

所以,根据极限的两边夹定理,当 x+x \rightarrow +\infty

limx+f(x)=0limx+f(x)=0 \begin{aligned} & \lim_{x \rightarrow +\infty} \left| f(x) \right| = 0 \\ \Longrightarrow & \lim_{x \rightarrow +\infty} f(x) = 0 \end{aligned}
ℹ️

极限的两边夹定理

设数列 {an},{bn}\{a_n\}, \{b_n\} 收敛,且当 nn \to \infty

limn+an=limn+bn=k \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = k

若存在自然数 NN,使得当 n>Nn > N 时,数列 {cn}\{c_n\} 满足

ancnbn a_n \leqslant c_n \leqslant b_n

则数列 {cn}\{c_n\} 收敛,且当 nn \to \infty

limn+cn=k \lim_{n \to +\infty} c_n = k

对函数 f(x)f(x) 求一阶导数

f(x)=0+extxsinttdt=t0+extsinttdt=0+extsintdt \begin{aligned} f'(x) &= \int_{0}^{+\infty} \frac{\partial e^{-xt}}{\partial x} \cdot \frac{\sin{t}}{t} \mathrm{d}t \\ &= -t \int_{0}^{+\infty} e^{-xt} \frac{\sin{t}}{t} \mathrm{d}t \\ &= - \int_{0}^{+\infty} e^{-xt} \sin{t} \mathrm{d}t \end{aligned}

然后我们令

Φ=0+extsintdt \Phi = - \int_{0}^{+\infty} e^{-xt} \sin{t} \mathrm{d}t

应用两次分部积分法

Φ=0+extsintdt=1x0+sintdext=1x(extsint0+0+extdsint)=1x20+costdext=1x2(extcost0+0+extdcost)=1x2(1+Φ) \begin{aligned} \Phi &= - \int_{0}^{+\infty} e^{-xt} \sin{t} \mathrm{d}t \\ &= \frac{1}{x} \int_{0}^{+\infty} \sin{t} \mathrm{d} e^{-xt} \\ &= \frac{1}{x} \left( e^{-xt} \sin{t} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} e^{-xt} \mathrm{d} \sin{t} \right) \\ &= \frac{1}{x^{2}} \int_{0}^{+\infty} \cos{t} \mathrm{d} e^{-xt} \\ &= \frac{1}{x^{2}} \left(e^{-xt} \cos{t} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} e^{-xt} \mathrm{d} \cos{t} \right) \\ &= - \frac{1}{x^2} \left( 1 + \Phi \right) \end{aligned}

解得

Φ=1x2+1 \Phi = - \frac{1}{x^2 + 1}

于是

f(x)=0+extsintdt=1x2+1 \begin{aligned} f'(x) &= - \int_{0}^{+\infty} e^{-xt} \sin{t} \mathrm{d}t \\ &= - \frac{1}{x^2 + 1} \end{aligned}

等式两边同时积分,由牛顿-莱布尼兹公式得

0+f(x)=0+1x2+1dx=arctanx0+=π2=limx+f(x)f(0)=I \begin{aligned} \int_{0}^{+\infty} f'(x) &= - \int_{0}^{+\infty} \frac{1}{x^2 + 1} \mathrm{d}x = - \arctan{x} \Big|_{0}^{+\infty} = -\frac{\pi}{2} \\ &= \lim_{x \rightarrow +\infty} f(x) - f(0) = -I \end{aligned}

解得

I=π2 I = \frac{\pi}{2}

解法二:化为二重积分

考虑如下广义积分

0+exydy=1xexy0+=1x \begin{aligned} \int_{0}^{+\infty} e^{-xy} \mathrm{d}y &= -\frac{1}{x} e^{-xy} \Big|_{0}^{+\infty} \\ &= \frac{1}{x} \end{aligned}

将之代入原式得

0+sinxxdx=0+sinx(0+exydy)dx=R+2sinxexydxdy \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \int_{0}^{+\infty} \sin{x} \left( \int_{0}^{+\infty} e^{-xy} \mathrm{d}y \right) \mathrm{d}x \\ &= \iint_{\mathbb{R}_{+}^{2}} \sin{x} e^{-xy} \mathrm{d}x \mathrm{d}y \end{aligned}

化为二重积分后,交换积分次序,即先对 xx 积分

0+sinxxdx=0+(0+sinxexydx)dy \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \int_{0}^{+\infty} \left( \int_{0}^{+\infty} \sin{x} e^{-xy} \mathrm{d}x \right) \mathrm{d}y \end{aligned}

由解法一的计算结果可知,上式可化简为

0+sinxxdx=0+1y2+1dy=arctanx0+=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \int_{0}^{+\infty} \frac{1}{y^2 + 1} \mathrm{d}y \\ &= \arctan{x} \Big|_{0}^{+\infty} \\ &= \frac{\pi}{2} \end{aligned}

解法三:留数定理

ℹ️

留数

洛朗级数负幂项的系数

Res[f(z),a]=12πiz=a+ρeiθf(z)dz \mathrm{Res}[f(z), a] = \frac{1}{2 \pi i} \oint_{z = a + \rho e^{i \theta}} f(z) \mathrm{d}z
ℹ️

留数定理

闭合回路积分等于所有孤立奇点的留数之和

Cf(z)dz=2πii=1nRes[f(z),zi] \oint_C f(z) \mathrm{d}z = 2 \pi i \sum_{i=1}^{n} \mathrm{Res}[f(z), z_i]

根据欧拉公式可知

sinx=12i(eixeix) \begin{aligned} \sin{x} &= \frac{1}{2i}\left(e^{ix} - e^{-ix}\right) \end{aligned}

所以

0+sinxxdx=12i0+eixeixxdx=12i0+eixxdx12i0eixxd(x)=12i0+eixxdx+12i0eixxdx=12i+eixxdx \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{2i} \int_{0}^{+\infty} \frac{e^{ix} - e^{-ix}}{x} \mathrm{d}x \\ &= \frac{1}{2i} \int_{0}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x - \frac{1}{2i} \int_{0}^{-\infty} \frac{e^{-ix}}{-x} \mathrm{d}(-x) \\ &= \frac{1}{2i} \int_{0}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x + \frac{1}{2i} \int_{-\infty}^{0} \frac{e^{ix}}{x} \mathrm{d}x \\ &= \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x \end{aligned}

构造复变函数

f(z)=eizz f(z) = \frac{e^{iz}}{z}

它有一个孤立奇点 z0=0z_0=0。由留数定理得

0+sinxxdx=12i+eixxdx=12iiπRes[f(z),z0]=π2Res[f(z),z0] \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x \\ &= \frac{1}{2i} \cdot i \pi \mathrm{Res}[f(z), z_0] \\ &= \frac{\pi}{2} \mathrm{Res}[f(z), z_0] \end{aligned}

注意到此处在运用留数定理时,被积函数是定义在实数域上的。实轴上的奇点具有对称性,积分路径(即实轴)的上半部分和下半部分对积分的贡献是相等的。因此,在应用留数定理时只需考虑上半复平面的情况即可。

0+sinxxdx=π2Res[f(z),z0]=π212πiz=εf(z)dz=14iz=εeizzdz \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{\pi}{2} \mathrm{Res}[f(z), z_0] \\ &= \frac{\pi}{2} \cdot \frac{1}{2 \pi i} \oint_{|z|=\varepsilon} f(z) \mathrm{d}z \\ &= \frac{1}{4i} \oint_{|z|=\varepsilon} \frac{e^{iz}}{z} \mathrm{d}z \end{aligned}

其中,ε>0\varepsilon > 0 是一个任意小的常数。所以曲线积分的路径是一个半径为 ε\varepsilon 的圆。

作变量变换 z=izz = iz,相当于将复平面顺时针旋转了 90°。但是这并没有改变曲线积分的路径,即

z=εiz=ε \begin{aligned} |z| &= \varepsilon \\ \Longleftrightarrow |iz| &= \varepsilon \end{aligned}

下面来计算这个环路上的积分

z=εeizzdz=z=εeizizd(iz)=z=εezzdz=z=ε1z(n=0znn!)dz=z=ε(1z+n=1zn1n!)dz=z=ε1zdz+z=εn=1zn1n!dz \begin{aligned} \oint_{|z|=\varepsilon} \frac{e^{iz}}{z} \mathrm{d}z &= \oint_{|z|=\varepsilon} \frac{e^{iz}}{iz} \mathrm{d}(iz) \\ &= \oint_{|z|=\varepsilon} \frac{e^{z}}{z} \mathrm{d}z \\ &= \oint_{|z|=\varepsilon} \frac{1}{z} \left( \sum_{n=0}^{\infty} \frac{z^n}{n!} \right) \mathrm{d}z \\ &= \oint_{|z|=\varepsilon} \left( \frac{1}{z} + \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!} \right) \mathrm{d}z \\ &= \oint_{|z|=\varepsilon} \frac{1}{z} \mathrm{d}z + \oint_{|z|=\varepsilon} \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!} \mathrm{d}z \end{aligned}

由柯西积分定理可知,如果环路所围成的区域是单连通区域,即没有孤立奇点,那么积分结果为零。这意味着

z=εn=1zn1n!dz=0 \begin{aligned} \oint_{|z|=\varepsilon} \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!} \mathrm{d}z &= 0 \end{aligned}

那么,下面只需求解

z=ε1zdz \begin{aligned} \oint_{|z|=\varepsilon} \frac{1}{z} \mathrm{d}z \end{aligned}

作变量变换 z=eiθz = e^{i \theta},得到

z=ε1zdz=02π1eiθd(eiθ)=i02πdθ=2πi \begin{aligned} \oint_{|z|=\varepsilon} \frac{1}{z} \mathrm{d}z &= \int_{0}^{2 \pi} \frac{1}{e^{i \theta}} \mathrm{d}(e^{i \theta}) \\ &= i \int_{0}^{2 \pi} \mathrm{d}\theta \\ &= 2 \pi i \end{aligned}

于是

0+sinxxdx=14iz=εeizzdz=14i2πi=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{4i} \oint_{|z|=\varepsilon} \frac{e^{iz}}{z} \mathrm{d}z \\ &= \frac{1}{4i} \cdot 2 \pi i \\ &= \frac{\pi}{2} \end{aligned}

解法四:柯西积分定理

由解法三可知

0+sinxxdx=12i+eixxdx=12i(0eixxdx+0+eixxdx) \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x \\ &= \frac{1}{2i} \left( \int_{-\infty}^{0} \frac{e^{ix}}{x} \mathrm{d}x + \int_{0}^{+\infty} \frac{e^{ix}}{x} \mathrm{d}x \right) \end{aligned}

定义复变函数

f(z)=eizz \begin{aligned} f(z) = \frac{e^{iz}}{z} \end{aligned}

为了挖掉 f(z)f(z) 的孤立奇点 z0=0z_0=0,定义 f(z)f(z) 的积分路径 CC

CR:z=R,argz[0,π]Cr:z=r,argz[0,π]Im(z)=0,z[r,R] \begin{aligned} C_{R}: |z| &= R, \arg z \in [0, \pi] \\ C_{r}: |z| &= r, \arg z \in [0, \pi] \\ Im(z) &= 0, |z| \in [r, R] \end{aligned}

所构成的正向闭曲线,如下图所示

由柯西积分定理得

Ceizzdz=CReizzdz+Rreixxdx+Creizzdz+rReixxdx=0 \begin{aligned} \oint_{C} \frac{e^{iz}}{z} \mathrm{d}z &= \int_{C_{R}} \frac{e^{iz}}{z} \mathrm{d}z + \int_{-R}^{-r} \frac{e^{ix}}{x} \mathrm{d}x + \int_{C_{r}} \frac{e^{iz}}{z} \mathrm{d}z + \int_{r}^{R} \frac{e^{ix}}{x} \mathrm{d}x \\ &= 0 \end{aligned}

那么

0+sinxxdx=12ilimr0R+(Rreixxdx+rReixxdx)=12i(limR+CReizzdz+limr0Creizzdz)(*) \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{2i} \lim_{\substack{r \to 0 \\ R \to +\infty}} \left( \int_{-R}^{-r} \frac{e^{ix}}{x} \mathrm{d}x + \int_{r}^{R} \frac{e^{ix}}{x} \mathrm{d}x \right) \\ &= -\frac{1}{2i} \left( \lim_{R \to +\infty} \int_{C_{R}} \frac{e^{iz}}{z} \mathrm{d}z + \lim_{r \to 0} \int_{C_{r}} \frac{e^{iz}}{z} \mathrm{d}z \tag{*} \right) \end{aligned}

下面分别计算这两个曲线积分。首先计算外环路径上的积分

CReizzdzCReizzds=1RCReixyds=1RCReyds=0πeRsinθdθ=20π2eRsinθdθ20π2e2Rπθdθ=πRe2Rπθ0π2=πR(1eR) \begin{aligned} \int_{C_{R}} \frac{e^{iz}}{z} \mathrm{d}z &\leqslant \int_{C_{R}} \frac{\left|e^{iz}\right|}{|z|} \mathrm{d}s \\ &= \frac{1}{R} \int_{C_{R}} \left|e^{ix-y}\right| \mathrm{d}s \\ &= \frac{1}{R} \int_{C_{R}} e^{-y} \mathrm{d}s \\ &= \int_{0}^{\pi} e^{-R \sin{\theta}} \mathrm{d}\theta \\ &= 2 \int_{0}^{\frac{\pi}{2}} e^{-R \sin{\theta}} \mathrm{d}\theta \\ &\leqslant 2 \int_{0}^{\frac{\pi}{2}} e^{-\frac{2R}{\pi} \theta} \mathrm{d}\theta \\ &= -\frac{\pi}{R} e^{-\frac{2R}{\pi} \theta} \Big|_0^{\frac{\pi}{2}} \\ &= \frac{\pi}{R} \left(1 - e^{-R} \right) \end{aligned}

这里进行了两次放大。第一次是利用积分的基本性质(保号性的推论),第二次是将曲线简化为割线。具体来说,对于 θ[0,π2]\theta \in [0, \frac{\pi}{2}]

sinθ2πθ \sin{\theta} \geqslant \frac{2}{\pi} \theta

而根据被积函数的单调性,达到化曲为直、放大结果的目的。

所以当 R+R \to +\infty

limR+CReizzdz=0(1) \begin{aligned} \lim_{R \to +\infty} \int_{C_{R}} \frac{e^{iz}}{z} \mathrm{d}z &= 0 \tag{1} \end{aligned}

下面继续计算内环路径上的积分。我们尝试将 f(z)f(z) 展开成洛朗级数

Creizzdz=Cr1zn=0inznn!dz=Cr(1z+n=1inzn1n!)dz=Cr1zdz+Crn=1inzn1n!dz=π0ireiθreiθdθ+Crn=1inzn1n!dz=Crn=1inzn1n!dziπ \begin{aligned} \int_{C_{r}} \frac{e^{iz}}{z} \mathrm{d}z &= \int_{C_{r}} \frac{1}{z} \sum_{n=0}^{\infty} \frac{i^{n}z^{n}}{n!} \mathrm{d}z \\ &= \int_{C_{r}} \left( \frac{1}{z} + \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \right) \mathrm{d}z \\ &= \int_{C_{r}} \frac{1}{z} \mathrm{d}z + \int_{C_{r}} \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \mathrm{d}z \\ &= \int_{\pi}^{0} \frac{ire^{i \theta}}{re^{i \theta}} \mathrm{d}\theta + \int_{C_{r}} \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \mathrm{d}z \\ &= \int_{C_{r}} \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \mathrm{d}z - i\pi \end{aligned}

由于被积函数中需要展开的部分只有指数函数,相当于是作了泰勒级数展开。

下面研究正幂项的积分,令

φ(z)=n=1inzn1n!dz \varphi(z) = \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \mathrm{d}z

Crφ(z)dzCrφ(z)ds=Crn=1inin1zn1(n1)!dsCrn=1in1zn1(n1)!ds=Creizds=r0πdθ=πr \begin{aligned} \left| \int_{C_{r}} \varphi(z) \mathrm{d}z \right| &\leqslant \int_{C_{r}} \left| \varphi(z) \right| \mathrm{d}s \\ &= \int_{C_{r}} \left| \sum_{n=1}^{\infty} \frac{i}{n} \cdot \frac{i^{n-1}z^{n-1}}{(n-1)!} \right| \mathrm{d}s \\ &\leqslant \int_{C_{r}} \left| \sum_{n=1}^{\infty} \frac{i^{n-1}z^{n-1}}{(n-1)!}\right| \mathrm{d}s \\ &= \int_{C_{r}} \left| e^{iz} \right| \mathrm{d}s \\ &= r \int_{0}^{\pi} \mathrm{d}\theta \\ &= \pi r \end{aligned}

这里一共进行了两次放大。第一次是利用积分的基本性质(保号性的推论),第二次是将求和的每一项都放大 nn 倍。

所以当 r0r \to 0

limr0Crφ(z)dz=0 \begin{aligned} \lim_{r \to 0} \int_{C_{r}} \varphi(z) \mathrm{d}z &= 0 \end{aligned}

于是

limr0Creizzdz=limr0Crn=1inzn1n!dziπ=iπ(2) \begin{aligned} \lim_{r \to 0} \int_{C_{r}} \frac{e^{iz}}{z} \mathrm{d}z &= \lim_{r \to 0} \int_{C_{r}} \sum_{n=1}^{\infty} \frac{i^{n}z^{n-1}}{n!} \mathrm{d}z - i\pi \\ &= -i \pi \tag{2} \end{aligned}

将 (1), (2) 这两个积分的结果代入原式 (*),得到

0+sinxxdx=12i(limR+CReizzdz+limr0Creizzdz)=(12i)(iπ)=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= -\frac{1}{2i} \left( \lim_{R \to +\infty} \int_{C_{R}} \frac{e^{iz}}{z} \mathrm{d}z + \lim_{r \to 0} \int_{C_{r}} \frac{e^{iz}}{z} \mathrm{d}z \right) \\ &= \left(-\frac{1}{2i} \right) \cdot (-i \pi) \\ &= \frac{\pi}{2} \end{aligned}

附:闭曲线作图相关代码

import numpy as np
import matplotlib.pyplot as plt

# 定义参数
R = 10.0  # 外半径
r = 1.0  # 内半径

# 生成参数 t
theta = np.linspace(0, np.pi, 100)  # 0到2π之间均匀分布的100个点
t1 = np.linspace(-R, -r, 50)  # -R到-r之间均匀分布的50个点
t2 = np.linspace(r, R, 50)  # r到R之间均匀分布的50个点

# 生成复数 z
z1 = r * np.exp(1j * theta)  # 内圆上的点
z2 = R * np.exp(1j * theta)  # 外圆上的点
z3 = t1  # 右侧线上的点
z4 = t2  # 左侧线上的点

p = np

# 绘制图形
plt.figure(figsize=(6, 6))  # 设置图形大小
plt.plot(np.real(z1), np.imag(z1), 'b')  # 绘制内圆弧
plt.plot(np.real(z2), np.imag(z2), 'r')  # 绘制外圆弧
plt.plot(np.real(z3), np.imag(z3), 'g')  # 绘制右侧线
plt.plot(np.real(z4), np.imag(z4), 'g')  # 绘制左侧线
plt.plot(0, 0, 'ko')  # 绘制奇点

# 绘制曲线方向
plt.plot(0, 10, 'r<')
plt.plot(0, 1, 'b>')
plt.plot(-5, 0, 'g>')
plt.plot(5, 0, 'g>')

plt.xlabel('Real')  # x轴标签
plt.ylabel('Imaginary')  # y轴标签
plt.title('Closed Curve')  # 图形标题
plt.grid(True)  # 显示网格
plt.axis('equal')  # 设置坐标轴比例相等
plt.show()  # 显示图形

解法五:傅里叶变换

考虑如下定积分

12π11πeiwtdw=12iteiwt11=12it(eiteit)=sintt \begin{aligned} \frac{1}{2\pi} \int_{-1}^{1} \pi e^{iwt} \mathrm{d}w &= \frac{1}{2it} e^{iwt} \Big|_{-1}^{1} \\ &= \frac{1}{2it} \left( e^{it} - e^{-it} \right) \\ &= \frac{\sin{t}}{t} \end{aligned}

这是一个傅里叶逆变换的表达式,它充分地说明了频域内的信号

F(w)={π,1w10,else F(w) = \left\{ \begin{array}{ll} \pi, & -1 \leqslant w \leqslant 1 \\ 0, & \mathrm{else} \end{array} \right.

在时域内对应的信号就是被积函数 f(t)f(t),即

F(w)=F(f(t))=+f(t)eiwtdt=11sintteiwtdt=π \begin{aligned} F(w) &= \mathscr{F}(f(t)) \\ &= \int_{-\infty}^{+\infty} f(t) e^{-iwt} \mathrm{d}t \\ &= \int_{-1}^{1} \frac{\sin{t}}{t} e^{-iwt} \mathrm{d}t \\ &= \pi \end{aligned}

w=0w=0,得到

F(0)=+sinttdt=π \begin{aligned} F(0) &= \int_{-\infty}^{+\infty} \frac{\sin{t}}{t} \mathrm{d}t \\ &= \pi \end{aligned}

又因为 f(x)f(x) 是偶函数,所以

0+sinxxdx=12+sinxxdx=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x \\ &= \frac{\pi}{2} \end{aligned}

解法六:拉普拉斯变换

构造一个以 tt 为变量的函数 f(t)f(t)

f(t)=0+sintxxdx(t>0) \begin{aligned} f(t) = \int_{0}^{+\infty} \frac{\sin{tx}}{x} \mathrm{d}x \quad (t > 0) \end{aligned}

则原式的值即为 f(1)f(1)。对 f(t)f(t) 作拉普拉斯变换得

F(s)=L(f(t))=0+(0+sintxxdx)estdt=R+2sintxxestdxdt=0+1x(0+sintxestdt)dx \begin{aligned} F(s) = \mathscr{L}(f(t)) &= \int_{0}^{+\infty} \left( \int_{0}^{+\infty} \frac{\sin{tx}}{x} \mathrm{d}x \right) e^{-st} \mathrm{d}t \\ &= \iint_{\mathbb{R}_{+}^{2}} \frac{\sin{tx}}{x} e^{-st} \mathrm{d}x \mathrm{d}t \\ &= \int_{0}^{+\infty} \frac{1}{x} \left( \int_{0}^{+\infty} \sin{tx} e^{-st} \mathrm{d}t \right) \mathrm{d}x \end{aligned}

交换二重积分的积分次序后,使用两次分部积分法计算内层积分

I=0+sintxestdt=1s0+sintxdest=1s(sintxest0+x0+costxestdt)=xs0+costxestdt=xs20+costxdest=xs2(costxest0++x0+sintxestdt)=xs2(xI1) \begin{aligned} I &= \int_{0}^{+\infty} \sin{tx} e^{-st} \mathrm{d}t \\ &= -\frac{1}{s} \int_{0}^{+\infty} \sin{tx} \mathrm{d} e^{-st} \\ &= -\frac{1}{s} \left( \sin{tx} e^{-st} \Big|_{0}^{+\infty} - x \int_{0}^{+\infty} \cos{tx} e^{-st} \mathrm{d}t \right) \\ &= \frac{x}{s} \int_{0}^{+\infty} \cos{tx} e^{-st} \mathrm{d}t \\ &= -\frac{x}{s^2} \int_{0}^{+\infty} \cos{tx} \mathrm{d} e^{-st} \\ &= -\frac{x}{s^2} \left( \cos{tx} e^{-st} \Big|_{0}^{+\infty} + x \int_{0}^{+\infty} \sin{tx} e^{-st} \mathrm{d}t \right) \\ &= -\frac{x}{s^2} \left(xI - 1\right) \end{aligned}

解得

I=xx2+s2 \begin{aligned} I = \frac{x}{x^2 + s^2} \end{aligned}

代入原式得

F(s)=0+1xxx2+s2dx=1s0+1(xs)2+1dxs=1sarctan(xs)0+=π2s \begin{aligned} F(s) &= \int_{0}^{+\infty} \frac{1}{x} \cdot \frac{x}{x^2 + s^2} \mathrm{d}x \\ &= \frac{1}{s} \int_{0}^{+\infty} \frac{1}{\left(\frac{x}{s}\right)^{2} + 1} \mathrm{d} \frac{x}{s} \\ &= \frac{1}{s} \arctan(\frac{x}{s}) \Big|_{0}^{+\infty} \\ &= \frac{\pi}{2s} \end{aligned}

于是,再将 F(s)F(s) 作拉普拉斯逆变换得

f(t)=L1(F(s))=π2L1(1s)=π214πjβjβ+jestsds \begin{aligned} f(t) &= \mathscr{L}^{-1}(F(s)) \\ &= \frac{\pi}{2} \mathscr{L}^{-1}(\frac{1}{s}) \\ &= \frac{\pi}{2} \cdot \frac{1}{4\pi j} \int_{\beta-j\infty}^{\beta+j\infty} \frac{e^{-st}}{s} \mathrm{d}s \end{aligned}

查阅拉普拉斯变换对可知

1su(t) \begin{aligned} \frac{1}{s} \longleftrightarrow u(t) \end{aligned}

其中 u(t)u(t) 是单位阶跃函数

u(t)={0,t<01,t>0 u(t) = \left\{\begin{array}{rr} 0, & t < 0 \\ 1, & t > 0 \end{array} \right.

所以 f(t)f(t) 的表达式为

f(t)=π2L1(1s)={0,t<0π2,t>0 \begin{aligned} f(t) &= \frac{\pi}{2} \mathscr{L}^{-1}(\frac{1}{s}) \\ &= \left\{ \begin{array}{rr} 0, & t < 0 \\ \frac{\pi}{2}, & t > 0 \end{array} \right. \end{aligned}

于是

0+sinxxdx=f(1)=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{x}}{x} \mathrm{d}x = f(1) = \frac{\pi}{2} \end{aligned}

特别地,我们通过拉普拉斯逆变换的方法发现,对于任意的 n>0n > 0,有

0+sinnxxdx=π2 \begin{aligned} \int_{0}^{+\infty} \frac{\sin{nx}}{x} \mathrm{d}x = \frac{\pi}{2} \end{aligned}